Oily Python: a Reservoir Engineering Perspective

PyAr — November 17, 2012

Andrea Gavana
Maersk Oil

andrea.gavana@gmail.com
andrea.gavana@maerskoil.com

MAERSK
OIL

mailto:andrea.gavana@gmail.com
mailto:andrea.gavana@maerskoil.com

Outline

What reservoir engineers do

Data pre-processing and number crunching — xIrd and numpy
2D visualizations — matplotlib

3D visualizations — VTK, mayavi and NetworkX

Integration with the reservoir numerical simulator — f2py

Automation and N-D interpolation — Python and scipy

<X X X X X X

Graphical user interfaces (GUIs) — wxPython

Presentation samples: http://www.infinity77.net/pycon/oily.zip

MAERSK
OIL

http://www.infinity77.net/pycon/oily.zip

What We Do

v Using all sorts of real-life measurements:

Man-made seismic waves

Detailed record of the geologic formations penetrated by a well (/ogs)
Rock properties, oil/water/gas content in the reservoir rock
Pressure/temperature vs. depth in a well

Oil/water/gas production rates measured at the well

... and many others ...

v A reservoir engineer:

Builds a 3D numerical model representing the reservoir and runs time-dependent

fluid flow simulations

Tries to calibrate that model, i.e., match the simulated results with the real data

Using the calibrated model, tries to predict the future performances of the field

MAERSK
OIL

What We Do — Complications

1-10Km

50 - 60 Km 20-100 GB

v Located underground: we can’t go and see what’s in there
v’ Sheer areal size — hard to accurately model numerically
v" Huge amount of data to pre-process and integrate

v Each simulation can easily generate 100 GB of results to analyze

MAERSK
oIL

Data Pre-Processing

“When fed with garbage data, a simulator is a machine that calculates meaningless
results with incredible precision.”

v A big part of the job is to ensure that the input data makes sense
 Measurements come from many, unrelated sources
» Data frequency — both in time and depth — varies wildly

* Deep and thorough data checking needs to be carried out

v" Dense visual representations of the input data are fundamental
* Nothing beats seeing an image of your data to spot errors

* Automatic filters and data adjustments (via Python code) are inherently limited

v" Cleaned, sensible data can then be used to feed the simulation

* One possible source of errors has been removed

MAERSK
OIL

Data Pre-Processing — xird

v Part of the data comes in Excel format (sigh...) — I am no friend with Excel

v xIrd is a great, multi-platform Python package to read Excel files

* Fast as a rabbit — faster than Excel itself

* Works around many Excel bugs (especially datetime-related)

COpen the Excel file
book = xlrd.open workbook('example 1.xls')
Get the first workshest

sheet = book.sheet by index(0)

nUmEY S¥rrav

3 SmMpLy oY 2 2%

values = nunmpy.zZeros | (sheet.nrows, 3))

¥ Loop over a1l e LECELl SOeel Xows

for row in range(l, sheet.nrows):

5=t the well nams

o | LI FoLL L 8 ML
well name = sheet.cell (row, 0).value
Column B should be a date...
cell type = sheet.cell(row, 1).ctype
cell wvalue = sheet.cell (row, 1).value
if cell type == xlrd.XL CELL DATE:

It's a date!
date = xlrd.xldate as tuple(cell value, book.datemode)

date datetime.date (*date[0:3])

¥ SLore prodiuctClon datad 1nto 8 numpy array

for col in range(3):
values[row, col] = sheet.cell(row, col+Z).value

v

Smoothly handles different cell types
(empty, text, number, boolean, etc...)

Various Excel-errors handling (#REF!,
#DIV/0!, #VALUE!, etc...)

Info on cell fonts, formats, formulae

It’s the base of XLSGrid (an AGW
widget in wxPython) ©

[ﬁ Qily sample: xIrd_1.pyJ

MAERSK
OIL

Number Crunching and 1/O

Task of the day

v
v

Quality check of the electrical measurements on a well (/ogs)
Depth-based data at 15cm intervals (well length can be more than 10Km)

Free format text file with variable-length headers

e Data is organized in columns

We only care about depth, rock property and water content
e All other data is discarded

Unphysical values must be filtered out (X <0 or X > 1)

Cleaned data is then exported in another format
1. Keeping original depth intervals (15cm)

2. Averaging rock property and water content every bm

MAERSK
OIL

Number Crunching and 1/O

@'Tmpad-[{::'\users\AGA103‘\Desmg\ww [=e[E = N
File Edit Search View Tools Macros Configure Window Help g X
LAS format log file from PETEEL =
Project units are specified as depth units e
~Yersion information 1
VERS. 2.0:

WRAP . WO

W ~Well
STRT .ft 2823 . 0000000
STOP . ft 25564 500000
STEP .ft 0.soooooo0 -

HULL —999. 250000

COMP . COMPANY

WELL. WELL : WELL

FLD. . FIELD

LOC. LOCATION

SRVC . SERVICE COMPANY

DATE. Monday., August 06 2012 13:46:51 . DATE
FROV . PROVINCE

UwI. UNIQUE WELL ID

APT. API NUHMEER
jsss============s=ss=========SsS=SSSSSS=S==sSsSsSSSSSSSSSSSSssSsSssSsSsssssss==

|| “Curve
DEFT .ft . DEPTH
BVW _RE-STE . BVW -

Header

Problem size and available resources

v" 860 wells, 4.9 GB of data scattered over a network

v" Python 2.7 on Windows Vista:

CPU @ 3.46 GHz, 64 bit architecture
16 cores, 96 GB or RAM

BT e\ Users) \De<kino\P - [==] = N
extPad [C.\Users\AGAIDS\DeskmE\Py entific\log.pm)

File Edit Search View Tools Macros Configure Window Help g X

~Paramster -jJ

~Ascii

2823.0000000 0.2229000032 2.5000000000 -999.250000 12 810000420 -
2823.5000000 0.2229000032 2.5000000000 -999. 250000 12.810000420 -
2824.0000000 0.2229000032 2.5000000000 -999. 250000 9.5500001907 -
2824 5000000 0.2229000032 2.5000000000 —-999.250000 10.140000343 —|E
2825.0000000 0.2229000032 2.5000000000 -999.250000 12. 060000420 -
2825.5000000 0.2229000032 2.5000000000 -999.250000 10.550000191 -
2826.0000000 0.2229000032 2.5000000000 —-999.250000 10.550000191 -
2826.5000000 0.2229000032 2.5000000000 —-9599.250000 9.8000001%07 -
2827 .0000000 0.2229000032 2.5000000000 —-9599.250000 9.0500001807 -
2827 .5000000 0.2229000032 2.5000000000 —-9599.250000 8.6724996567 -
2825.0000000 0.2229000032 2.5000000000 -999.250000 8.2950000763 -
2828.5000000 0.2229000032 2.5000000000 -9599.250000 7.9175000191 -
2829.0000000 0.2229000032 2.5000000000 -999.250000 7.5399999619 -
2829.5000000 0.2229000032 2.5000000000 -999.250000 9.0500001%07 -
2830.0000000 0.2229000032 2.5000000000 —999 250000 §.7700004578 -
2830.5000000 0.2229000032 2.5000000000 —999. 250000 7.9899997711 -
2831.0000000 0.2229000032 2.5000000000 -999. 250000 §.9200000763 -
2831.5000000 0.2229000032 2.5000000000 -999. 250000 8.9200000763 -
2832.0000000 0.2229000032 2.5000000000 -999. 250000 10.680000305 -
2832.5000000 0.2229000032 2.5000000000 -999.250000 11.239999771 -
2833.0000000 0.2229000032 2.5000000000 —-9599.250000 10.930000305 -
2833.5000000 0.2229000032 2.5000000000 -999.250000 10.430000305 - -

Data

ﬂ Oily sample: numpy_1.py

MAERSK
OIL

Number Crunching and 1/0 — numpy

rock water = data[:, 1:]

#F Column @ = Deptl

#F Column £ = HRHock properiy

#F Column 13 = Water content

column=s = (0, &, 13)

1. Load the dats using numpy.loadtxt

data = munpy.loadtxt ('log.prn’, skiprows=skip, usecols=columns)
2. Filter out the bad valuss for rock property

rock water[rock water < 0] = -9585

rock water[rock water > 1] = -385

data[:, 1:] = rock water

3. Zave the filtered data to & nev file
numpy.savetxt ("log out.prn', data, fmt='%-15="')
¥ 4. Moving average =very Z0ft - &m

a. Set negative (default) valuss to Nall

0, nunpy.NaM, data)

£ P sllocate 3 matrix for the averaged valuss

out averaged = numpy.zeros((5, averaged.shape[l]))

for col in xrange (averaged.shape[l]):
out_averaged([:, col] = moving average (averaged[:, col],

40}

loadtxt is very handy and fast
Returns a 2D numpy array

Supports a wide range of file
formats by tweaking its keyword
arguments

Fast and intuitive operations on N-D
arrays

savetxt is as handy and as fast as
loadtxt

A moving average implementation is
a 2-liner with numpy

MAERSK
OIL

Number Crunching and 1/0 — numpy

Final results and performances

v" Looped through all the files in 6.5 minutes

v" Can we do better?

* Yes we can — go parallel with the multiprocessing module

* The task is easily parallelizable: one file at a time

import numpy

2 Ter Fo. ., . _— rr o 17
e v = e T ATl = =
#F SmpdpAlL ¥ 1= L UlilerL- Lol LU SViSL ¥ oA LAAS

pool.map (read log file, prn files)

from multiprocessing import Pool, cpu_count

Start @ multiprocessing pool of processes
Us= 311 the availakle CFUs
pool = Pool (processes=cpu count(})

N = 7 - - 74 - s =77 P - =
prn ril &5 1§ 8 115K ol 811 Cioe SXEC

v

Windows is less suited to parallel stuff than
other platforms (no os.fork())

Nevertheless, this approach gives stupendous
speed gains

If | am 1/O-bound... | don’t care

MAERSK
OIL

e
Number Crunching and 1/0 — numpy

10

[o] Processing'time (minutes)
A& Processing speed (files/s)
| |1 Memory consumption - RAM (GB) |

Processing time (minutes)
(8]

|

iles/s

/é‘/[7.9filesls '

Petrel RE Reference Project - Logs Processing Time

:

8
Number of CPUs (adim)

16

20

19

18

= = =
(S} (¢} ~
Memory consumption - RAM (GB)

e
S

i
[
w

12

111

10

(o]

120

118

116

= =
N IS

[)
o
Processing speed (files/s)

MAERSK

oIL

2D Visualizations
“A picture is worth a thousand words.”

v" We produce visualizations for every data type in our datasets
e Visual inspection is a powerful solution to spot errors
* Everyone in the team has a chance to analyze the data

* Often provide new insights on how to better integrate the data
v" The generated plots contain as much information as possible

v' matplotlib is the Python package of choice
e Almost limitless customizations of plots
* Very high plot quality and wide range of plot types
* Easy integration with GUI toolkits (wxPython, Qt, PyGtk, Tkinter)

MAERSK
OIL

2D Visualizations — matplotlib

True Vertical Depth - TVDSS (ft)

é

i 0 . % 0%%9 @ o " I N]] I sar 700

&0

Pressure (psia)

[,
Measured Depth (ft)

—e— TVDSS
a A Pressure m
o Reservoir Fluids o Mobility '\TVDnaj—TVDRFT\a1,y:3,3ft (0.11%)
. . . WELL
]| A Gas A Oil —— Trajectory ﬁj/’_{u{dhz'o'all I}S&%/fi
11| a4 casoil A Oil/Water X Bad Test ity i
elevation —
] A Gas/Water A Water T=124.3 ° F
WELL (01-Jan-2100) '
—————————— 17— —
r Reservoir 1] } :
o g 0 = ! : : 2

Mobility (mbD/cP)

2D Visualizations — matplotlib

from mpl toolkits.axes gridl import host_ subplot
import mpl toolkits.axisartist as AL
import matplotlib.pyplot as plt

host = host_subplot (111, axes class=AL.Axes)
plt.subplots adjust (right=0.75)

parl
parz

= host.twinx()

= host.twinx()

new fixed axis = parld.get_grid helper().new fizxed axis
par2.aris|['right'] = new fixed axis(loc='right',
axes=par?,
offset=(60, 0})

pard.axis["right'"] .toggle (all=True)

fig = plt.figure()
ax = fig.add subplot(lll)

colors = ['r', 'g', 'b', 'm', 'y']
for i in range(5S):

start, end = 10%i, 10%({i+1)

ax.axvspan(start, end, color=colors[i], alpha=0.1)

regservolir = 'HReservolr 4'3$(i+1)

ax.text (10*i+5, &, reservoir, fontweight='kbold',
bbhox=dict (fe='w', ec='k'), =zorder=100,
ha="'center!'

plt.show()

< = W

Multiple independent Y-axis

Axis location, ticks, colors, labels, etc... can
be tweaked

axisartist supports curvilinear axis as well

[ﬂ Oily sample: matplotlib_l.py]

axhspan adds a horizontal span (rectangle)
across the axis

axvspan is its vertical friend

{g Oily sample: matplotlib_z.py]

MAERSK
OIL

R
2D Visualizations — matplotlib

True Vertical Depth - TVDSS (ft)

WELL (Resgrvoir)

Event Date Top (ft) Bottom (ft) —— Trajectory
perforation 01-Jan-2100 4656.0 7034.0 A SqUeEZE
perforation 01-Jan-2101 7840.0 8140.0 .
perforation 01-Jan-2102 8947.0 9247.0 a2 Perforation
perforation 01-Jan-2103 9625.0 17677.0 Dogleg Severity
squeeze 01-Jan-2104 0.0 4656.0
squeeze 01-Jan-2105 7034.0 7840.0 ¢ Top 20 DLS
squeeze 01-Jan-2106 8140.0 8947.0
squeeze 01-Jan-2107 9247.0 9625.0
.
.
.
RERE
. .
o :
bR, - - 4

Measured Depth (ft)

Dogleg Severity (degrees / 100ft)

MD vs. Azimuth / Inclination
90°

180F

— Azimuth
Inclination
® Top DLS

270°

MD(f2)

o

() uo;;nu@p&; Jymunzy

B

WELL

EWES UEEEE RE—E -

oIL

2D Visualizations — matplotlib

fig = pltc.figure ()
ax = fig.add subplot(lll)

collLabels=collabels=,
takble.auto set font size (False)

plt.show()

collLabels = ["Event', '"Date', '"Top (ft)'", 'Bottom (ft) "]

#F Neo row labels

rowLabels = ["", "']

cellText = [["Perforation', '01-Jan-2020', '300°", "400"'],
[" Squeeze’ , "01-Aug-2030', s "300']11

table = ax.table (cellText=cellText, rowLabels=rowLabels,

bbox=(0.1, 0.7, 0.8

E AAA v T S S
F &£40d polar aXes

fig.add axes([0.1, 0.1, 0.5,

0.81.,

fw
B
1

-
|

r = numpy.arange(d, 3.0,
theta = Z*numpy.pli*r
ax.plot (theta, r, color='Fecs2dl1l28',

-
| |

ax.set_rmaxil.l)
ax.grid(Trues)

plt.=show)

polar=True)

v" Tables are a useful addition to
matplotlib plots

v Exact formatting, colors and font
may sometimes be hard to get
right

[ﬂ Oily sample: matplotlib_3.py]

v' Polar plots are not widely used in
the oil industry

v" They can be a great tool to analyze
a well trajectory

[a Oily sample: matplotlib_4.py]

MAERSK
OIL

2D Visualizations — matplotlib

Rig 1+

Rig2

Rig3f

Rig 4}

Rig 5

Rig6}

Drilling Schedule Forecast _

Reservoirs 5
Il Res 1l
[Res 2

-“"“§III | | | | O &

SL© & s ?II

%%%%%%%% mm III--
l ------------ i -“I _-l- -
: &

- D& |
- IIII\-I“I -
++++++++++ fffffff ["

Date

. MAERSK
oL

2D Visualizations — matplotlib

fig = plt.figure ()
ax = fig.add subplot(l1ll)

ax.broken barh([(110, 30), (150, 10)1, (10, 9},
facecolors="'kblus"')

ax.broken barh([(10, 50}, (100, 20), (130, 10})1, (20, %),
facecolors=("red', 'vellow', 'green'})

ax.set_ylim(5, 35)
ax.set_xlim(d, 200)

ax.set_xlabel ('Drilling Time (days)')
ax.set_yticks ([15, 2Z3])
ax.set_yticklabels(['Rig 1°', Eig 2'])

ax.grid(True)

ax.annotate ('Rig stopped', (&1, 25},
xytext=(0.6,

arrowprops=dict (facecolor='klack', shrink=0.0

120 .

fontsize=leg, ha='right', va='"top')

plt.show()

0.9), textcoords='axes fraction'

r

v' broken_barh is the perfect tool to
draw drilling schedules

v Similar plots can be obtained by
using multiple calls to ax.barh()

v" Axis annotations add useful info
about the data being displayed

{g Oily sample: matplotlib_5.py]

I’ll use this occasion to remember John Hunter, the creator of matplotlib
(1968-2012)

MAERSK
OIL

3D Visualizations

“There's something that 3D gives to the picture that takes you into another land and
you stay there and it's a good place to be...”

v" Most commercial software handle 3D stuff with no effort

v 3D visualization in Python is used only for specific, niche problems
* Simulation results of well production at a specific depth
* Double-checking input data for the simulation

e Visualize a relationship between wells, area, reservoir and a project

v' VTK and mayavi are the most widely used 3D rendering Python packages
e Scale fairly well on big 3D datasets
 VTK can easily be integrated in a GUI window (wxPython, Qt, PyGtk, etc...)
 VTK figures can be saved as VRML files to let the colleagues play with them

MAERSK
OIL

Y
mn
14
w
o
20
|

id)

000 cells (VTK unstructured gr

I

v" We easily go up to 10 million cells, interaction is still smooth

3D Visualizations — VTK
v" 3D reservoir model, 500

3D Visualizations — VTK

v' VTK unstructured grids require explicit point and cell representations

v" 3D Cells can be seen as distorted hexahedrons

B T T T - - -
(8 *Ix * Iy * 1N]

MECrl1Xx 15 4 vE , o) S0 NUMDY 3EF

vk _pts = arraythkPnintskmatrix]

Create vtk data

grid = wvtk.vtkUnstructuredGrid()
grid.SetPoints (vtk pts)

ids = numpy.arange (0, S*nx*ny*nz, doype=numpy.float32)
ids = numpy.reshape (ids, (nx*ny*nz, I5))
cells = arrayEvtkCellArraykids]

Assign cells to unstructursd grid
grid.5etCell=(12, cell=)
ot r create the unstructured grid

ugrid = wvtk.vokEXtractUnstructuredGrid()
ugrid. SetInpat (grid)

ugrid = ugrid.GetOutput ()
ugrid.Update ()

v Special techniques exists to handle very
large datasets

v" Coincident points can be merged (faster
rendering)

v Highlighted functions are available in the
array_handler.py module as part of the
distributed samples

v" These functions ease the transition
between numpy arrays and VTK arrays

[ﬁ Oily sample: vtk_1.py}

MAERSK
OIL

3D Visualizations — VTK

Spheres identify a
producing interval in a
well

5488 GES Sdos

Colors represent the
produced fluid (oil,
water, gas)

Spherical slices shows
the relative abundance
& of each fluid

Eclipse Location: I=71, J=67, K=15

Real Location: X=18275.25, Y¥Y=4423, Z=5068.1422
Well Name: 9806, Field Zone: SC, Object: 3
WOPT: B8085.516 SM3 WGPT: 20818263 SM3

o e e Each sphere can be

WOPR: 22.1036 SM3/DAY WGPR: 5688.05 SM3/DRY
WWPR: 0.873227 SM3/DAY WGIR: 0 SM3/DRY

WEGOR: 257.336 SM3/SM3 WWCT: 0.038005 Adim ”piCked”’ i.e. Selected
with the mouse, to
display more data

Time based animation
are possible

MAERSK
OIL

3D Visualizations — VTK

¢ ¥, ¥y £ coomdinaies of 2 Vel trajectony v’ vtkPolyData can represent vertices, lines,
points = numpy.array (points)

line = [range (len(points))] p0|yg0nS etc.”

Create the vtk dats for the trajectory . .

vtk pts = a:r:ra:-,-r.cvt]-:PD:Lntsl(pcu:l.'itsj ‘/ VtkTUbeFI/ter IS a Very gOOd Way tO

vtk lines = I arraythkCellArrayklinej

represent wells in a 3D space
poly = wtk.vtkFolyData ()

poly.serkeints (vrk _prs) v" The well name caption “actor” follows the
poly.5etlines (vek_lines)
user view while she interacts with the VTK

#F A filter that gensrates tubes arcound linss

profileTubes = wvtk.vtkTubeFilter () W|ndOW
S=t the tube radius and resolution
fileTubes.S5etRadinus (radius)
D aToien . S) v Highlighted functions are available in the
profiletubes. Serinput (poly) array_handler.py module as part of the
Map vtkPolyData to graphics primitives distributed Samp|eS

wellMapper = wvtk.vtkPolvDataMapper ()
wellMapper.SetInput (profileTubes.GetOutput ())

¥ - 4= = Mg I Sy 4 —]
regte = 7 7 = =
#* LS =L [= P FLEN LD il FOoLlL

wellBotor = *.rt]-:.vt]-:ActDI(] [a O||y Sample Vtk_z,py]

wellActor.SetMapper (wellMapper)

L emmta 3 mamETan Pasotae M T Fha weall m

textheotor = wvtk.vtkCaptionfctor2D()
textlctor.SetCaption (welllHame)

MAERSK
OIL

3D Visualizations — NetworkX and mayavi

[ﬁ Oily sample: mayavi_l.py]

Visualize relationships
between wells, areas,
reservoirs and projects

Shows dependencies
between wells and
undeveloped areas

3D version of a
GraphViz inheritance
diagram

Particularly useful
when a project
contains 1000s of wells

MAERSK
OIL

Integration with the Simulator
“Fast as a rabbit, dumb as a stone.”

v" The reservoir simulator can easily generate 100 GB of results per simulation

v Each result set is made of 5-8 interesting files
* Results are stored in heavily compressed, unformatted binary files
* These files are generated by a Fortran-based simulator

* File structure is relatively simple and straightforward

v" We can use Python to extract the simulation results from these files
* Performances are generally poor (code is slow)

* Does not scale well when files are big

v" Can we write a small Fortran routine and interface it with Python to read these
large, binary files?
 Enter f2py

MAERSK
OIL

Integration with the Simulator - f2py

v Fortran to Python interface generator

v" Connects the two languages:
* Creates Python C/API modules from Fortran 77/90/95
* Works directly on Fortran sources
* Automatically handles the difference in the data storage order of multi-dimensional

Fortran and numpy arrays

v Requires a Fortran compiler installed — supports many major compilers, such as
gfortran, Intel IVF, Absoft, NAG, etc...

f2py -c fortran_file.f90 -m py_module

v" Now every Fortran subroutine/function in fortran_file.f90 is accessible in Python
by importing py_module

MAERSK
OIL

[
Integration with the Simulator - f2py

3.0 Fortran Compilers and f2py vs. Pure-Python 3.0
‘ ‘ e—e |ntel IVF
—e (95
e—e GFortran
: «—s Pure-Python
—~ 2.0 2.0
[0}
T
<
)
(%)
]
2
o
E1s 41,5
=
=)
£
0
n
]
v
o
1S
& 0 10
7//
0.5
0.0 100 200 300 400 5060
Binary File Size (MB)
MAERSK

oIL

Automation and N-D Interpolation

“Besides black art, there is only automation and mechanization.”

Task of the day

v" We have 16,000 new simulations available (sensitivities)

* Each of them represents a unique combination of 13 parameters (oil gravity, rock
properties, distance between wells etc...)

e Simulation results could give insights on the numerical model sensitivity to the
parameters variations

v' The 13 parameters form a discrete set of known data points
v' Use a f2py-generated module to read results from all the simulations

v' Use interpolation to estimate results at intermediate values of the parameters
» scipy offers multi-dimensional interpolation/extrapolation capabilities

* scipy.interpolate.rbf: uses Radial Basis Function interpolation of N-dimensional
scattered data

[ﬁ Oily sample: scipy_l.pyJ MAERSK

e
Automation and N-D Interpolation - scipy

FOPT @ 30 years vs Well‘spacing

Qil API
Value 1
Value 2
Value 3
Value 4
Value 5
Value 6
Value 7
Value 8
Value 9
Value 10
Value 11

ijtrapolation

FTTT

Interpolatiorj

11

Extrapolatiol

FOPT @ 30 years (MMstbh)

Well spacing

Graphical User Interfaces
“A picture is worth a thousand words. An interface is worth a thousand pictures.”

v’ User interfaces are an obvious choice when it comes to sharing your findings
with non-Pythonistas colleagues

v Although many high quality GUI frameworks are available...

v' wxPython is *the* tool | use
* Almost effortlessly integrate with matplotlib and VTK (2D and 3D)
e Easy to build practical, responsive and sexy user interfaces
* GUIs look (and are) native, whatever the platform

 Number of widgets available far surpass all other toolkits

v’ Distribution to colleagues is done via py2exe / Pylnstaller and InnoSetup to
generate a standard Windows installer

MAERSK
OIL

Graphical User Interfaces
Task of the week/month

v" Create a GUI that evaluates the quality of a calibrated reservoir model

o » Measurements]| ¥ Calibration is good when simulation results
| — Simulation . are close to measurements (shaded area)

v Errors in the calibration are measured by
different formulas such as:

2
Error = %\ Zw; (S; ;05)

Oil Rate (stbh/day)
B

=1

Date

v" The GUI should allow the user to explore the numerical calculations and to
quickly plot the simulation results against the measurements

MAERSK
OIL

Graphical User Interfaces

Complications
v" Number of data points: 17 years of historical measurements
v" Number of wells and simulation time steps (thousands)

v" The user would like to be able to:
* Filter out values outside a user-defined date window (per well)
* Apply a custom multiplier to some of the measurements
e Exclude some values if a well has been closed for more than X days in a month
* Modify the error function if a well has been using some gas to ease production

* Many, many other customizations...

v" The GUI puts together the power of numpy, f2py, matplotlib, scipy,
multiprocessing and wxPython to deliver all that and much more ©

MAERSK
OIL

Graphical User Interfaces

HM_Evaluation v1.18

R EEEEEEEEEE——————=====.

well Info %/ Input Data
f-‘;& Available wells ECLIPSE Summary File (Production Output):

Vel MY_SUMMARY.SMSPEC
* Well 2
Back-Calculated BHPs File:

THP_BHP_Values. xls

‘Qutput Folder for Images and Documents:

EBrowse

Browse

[=Tal x]
=P
Uptime Filter (%):
80

‘Cumulative Filter (STB/MSCF):
1]

‘Custom End Date:

% el 7 ' \MyProjects\HM_Evaluation Browse 7/ 1/2011 [ERd
& wels
& wells & Simulation 3¢ =
g t::::: 101 FEHM quality | [Well 7Profles 3| [[Wel 7RawData x =
* 44 wel 12 Match Deviations Match Quality i
&7 well 13
& well 14 wells woPT WGPT wweT P woPR WGPR wwer Grade wells woPT WGPT WWPT P WOPR WGPR wWwcr overall
& wel 15 M9
& wel 16 Well 1 Well 1
d well 17 Well 2 100% 100% 100% 1095 100% 100% 55% 6.95 Well 2 Poor Poor Poor Poor Poor Poor Poor Poor
& wel Well 3 Well 3
Well 4 Well 4
Well 5 Well 5
R Wwell 6 Wwell 6
& \:;" - well 7 8% 8% 51 11% 11% 5% 0.87 well 7 Fair Good Good Fair Good Fair Good
s wells 0% 14% 22% 84 10% 4% 0.98 well8 Good Good Poor Good Fair Good Good
44 well23 Well9 11% 57 4% 2% Well9 Poor Good Good Good Fair
S well 24 well 10 3% 4% 21% 114 8% 4% 0.85 well 10 Good Good Poor Fair Good Good Good
& well 25 well 11 6% 0% 10% 98 12% 4% 0.96 well 11 Fair Good Good Fair Fair Good Good
44 well 5 well 12 16% 16% 510 23% 19% 23% 2.27 well 12 Poor Fair Poor Poor Good Poor Poor
%WE" 27 well 13 18% 29% 28% 104 11% 6% well 13 Poor Poor Poor Fair Fair Fair Fair
* j well 28 well 14 5% 14% 46% 165 17% 149% 17% well 14 Good Good Poor Fair Fair Good Poor Fair
% well 2 well 15 8% 10% 32% 84 12% 5% Well 15 Fair Good Poor Good Fair Good Fair -
well 16 0% 25% 48% 128 8% 11% 5% well 16 Good Poor Poor Fair Good Good Fair Fair 1
Well 17 5% 10% 7% 128 10% 33% 5% Well 17 Good Good Good Fair Fair Fair Fair Fair
well 18 10% 8% 14% 129 8% 4% 2% 0.98 well 18 Fair Good Fair Fair Good Good Good Good
well 19 well 19
well 20 well 20
well 21 well 21
well 22 9% 15% 28% 61 7% 17% 4% well 22 Fair Good Poor Good Goad Good Good Fair
well 23 10% 28% 62% 14% 30% 12% well 23 Fair Poor Poor Fair Good Poor Fair
well 24 4% 4% 52 6% 7% 0.63 well 24 Good Good Good Good Fair Good
well 25 7% 15% 41% 102 22% 5% well 25 Fair Good Poor Fair Poor Fair Fair
well 26 25% 10% 19% 3% well 26 Poor Good Fair Good Fair
well 27 31% 28% 37 20% 31% 12% well 27 Poor Poor Good Poor Fair Poor Fair
well 28 33% 13% 227 35% 15% 6% 2.18 well 28 Poor Good Poor Poor Good Fair Poor
well 29 52 0.62 well 29 Good Good
Avg Dev 15% 18% 35% 173 18% 26% 9% 1.58] WOPT WGPT WWPT WBHP WOPR WGPR WWCT
Grade Poor Fair Poor Poor Fair Good Fair Good 5% 15% 10% 85 10% 30% 5%
Fair 10% 20% 20% 170 20% 40% 10%
) Values come from the Back-Caloulsfed BAFs File . Not induded in the grading.
Good 30% 68% 15% 42% 30% 73% 40% 33%
Fair 35% 5% 8% 42% 45% 18% 35% 52% -
Messages & Actions = C1bd
Time HM_Evaluation Messages @ Dry Run

E;) 11:38:51 Production results processed correctly

Computer Name: WCPH00216, User Logon: agal08

Thursday, 11 October 2012 @ 11:37:48

- Kill

T ——
RAM: 0 Mb I CPU; 8%

Graphical User Interfaces

Final outcome

v" We have a fast, practical and nice GUI to examine the quality of model
calibration

v Colleagues can independently run the GUI and examine the results
v" Multiple simulations can be analyzed and compared

v" The interface automagically exports matplotlib figures for all the wells and Excel
reports (and it does it on multiple processors...)

* Findings and insights can easily be shared outside the team

* Consistent, fixed (and beautiful) format for pictures in reports and documents

v" We have the source code © — any modification is embarrassingly fast

MAERSK
OIL

Graphical User Interfaces

HM =

Well Info 2| | Input Data
E}ﬁ Available wells ECLIPSE Summary File (Production Output): Uptime Filter (%0):

well 1 MY_SUMMARY.SMSPEC Browse 80
& el 2

o Wl 3 Back-C BHPs File: GRAF File (RFT Output): Cumulative Filter (STB/MSCF):

el 4 BHP_THP_Values. xls Browse | [c:WMyProjects HM_Evaluation | [srowse 1,000
- Wl &

Qutput Folder for Images and Documents: Custom End Date:
c:\MyProjects\HM_Evaluation Browse 7/ 12011 [ERd

%WEIIQ o & simulation .

g x::: ﬁ | EBHMQuality | [well 7 Profiles > | []wel 7RawData 3|

5‘""&"” Well 7 Oil production cumulative Well 7 Gas production cumulative Well 7 Water production cumulative Well 7 Bottom hole pressure
b8 well 13 T T T T T T T T T T . T ——

* &4 well 14 - : :
o T : : :

M & wel 17
* ey well 18
Well 12

- Well 20
Wl 21
* & wel 22
44 well 23
44 well 24
il * & wel 25
* .__.94 well 26
* 34 well 27
& wel 2
4 well 25 B2

Pressure (PSIA)

Liquid Production Volume (5TB)
Gas Production Volume (MSCF)

Liquid Production Volume (5TB)

sages

Well 7 Oil production rate Well 7 Gas production rate

Well 7 Water cut

Liquid Flowrate (5TB/d)
Water Cut (-)

Gas Flowrate (MSCF/d)

W7 7 @ o T o e

700+ B@E

=
Computer Name: WCPH00216, User Logon: agal08 Thursday, 11 October 2012 @ 11:32:01 RAN: 0 B l :E!_ﬂ

Graphical User Interfaces

Task of the week/month

v" The reservoir simulator we use is called ECLIPSE

It’s keyword-based — you enter inputs in a text file with keywords and sub-keywords
1983: first release of ECLIPSE (ECL’s Implicit Program for Simulation Engineering)
ECLIPSE currently handles =1,600 keywords

On average, each keyword has 3 switches/sub-keywords (=4,200 in total)

No editor with syntax highlighting, error checking capabilities and integrated help
system exists for the input files (after 30 years!!)

v" How about a wxPython-based editor with all these capabilities?

The wx.StyledTextCtrl (Scintilla-based) already provides excellent syntax highlighting
for various programming languages

wxPython 2.9 contains powerful HTML viewing capabilities (via wx.htm/2 module)

The ECLIPSE input files syntax is very similar to the programming language Lua

MAERSK
OIL

Graphical User Interfaces

Another GUI: DeckEd
v' DeckEd is a text editor based on wx.StyledTextCtrl

v Syntax highlighting for the reservoir simulator ECLIPSE and more than 60 other
programming languages (Python, C++, Java, HTML, PHP, Ruby, etc...)

Integrated help for the reservoir simulator keywords and sub-keywords
Runtime monitoring of simulation status and progress

Runtime error checking for ECLIPSE input files keywords

D N N NN

Plugin-based architecture — you can add a Python debugger, a spell checker, a
code browser, etc...

MAERSK
OIL

e
Graphical User Interfaces

Keyword Tree

"2 "KB_SOUTH_WF.DATA - file://C:\MyProfcts] = &][=
File Edit View Format Settings Zols Simulation Interface Help

jete ae P AL BED

Keywords /E KB_SOUTH_... BP_CASES_110420... | [F; BRINETRACERDA... | {9 IX_P1_ECLIIX IX.of | [63] htenLhtml | & vhscriptybs | & python.python = || Explorer 5]
J_/}\')Keywords] f[ndu/ I - 1 - J.JFiles [I_"B(prorerl L4
7 Notarn m 2 NOECHO B_SOUTH WF.DATA
e 3l 3
< MESSAGES | [— 1 P_CASES_11042011.D..
£ %5 RUNSPEC 5 - PRINT LIMIT >| STOP LIMIT —--——m-——mmmmm > 1 RINETRACER.DATA
- & -- mess comm warn prob erro bug Tmess cowmm warn prob M M L P1_ECL2IX IX.id
7 2% 100 10000 4% 1000000 100000 / pe n I es Ist LA |html
2 | vbscriptvbs
s [& python.python
10 RUNSPEC
#5 DISGAS E -
5 PERMX 13 | —-NOSIM
4% FIELD o0
#5 START 15 - model name
< % WELLDIMS 16 TITLE
#% NOECHO 17 KB_SOUTH
#5 INCLUDE 18
. ﬁsINCLUDE = 13 -- model dimensions
#echo 20 DIMENS
21 -- 1iii jjj kkk
5 INCLUDE 22 480 444 14 /
23 M
e € Real-Time Error
25
26 - three phase with dissolved gas .
#5 SMRYDIMS 27 OIL C h k
%VFPIDIME Za WATER e C I n g
#5 vFPPDIMS N G2S5
% EXTRAPMS 30 DISGAS
31
- % NSTACK Er R p—
-5 UNIFIN 2z
#5 uNIFoUT 38 - unit convension
-l GRID 3s FIELD
3 epIm m 36
[&] PrROPS 37 -- simulation start date
B s I d Hel
4 NOECHD > 1o 2012/ ntegrate e p
:INCLUDE 41 - well dimensions
INCLUDE 4z WELLDIMS
lINCLUDE 43 —— mxwel mxcon NMXYrp mxwpg
Sl ECHO 42 400 300 25 300 /
=3 SOLUTION 45
BB RPTSOL 46 -
QRPTRST 47 —-- other runspec options =

Help & Examples

&3 NOECHO ||« / 1 3
/
[

| @ Full Help | g Examples (1) | = Sub-kems (12)

WELLDIMS J

Well dimension data

The data consists of up to 10 items, describing the dimensions of the well data to be used in the run. The data must be terminated by a slash (/).

®

ECLIPSE 100
ECLIPSE 300

x

Eclipse cpl252 CRLF Line: 33 Column: 0

Graphical User Interfaces

File Edit View Format Settings Tools

it 96 pHB

Keywords

. Keywords %In.y |

Line Entry
A
541 AQANTRC
536 AQUANCON
532 AQUCT
30 AQUDIMS
528 AQUFETP
B
14 BRINE
608 BSCN
611 BSIP
C
630 COMPDAT
324 COORD
599 CSFR
605 CSIT
602 CSPT E
D
473 DENSITY
5 DIMENS
E
653 END
18 EQLDIMS
51 EQUL
F
16 FIELD
570 FSR
571 FSIT
568 FSPR
563 FSPT
G
638 GCONIME
39 GRID
578 GSR
581 GSIT
572 GSPR
584 GSPR
575 GSPT
N
8 NONNC
E NSTACK
0
10 olL
P
394 PERMX
406 PERMY
418 PERMZ
430 PORO
467 PROPS
476 PVDO
487 PVTWSALT
R
469 ROCK

Alphabetical
Keyword List

=)

RINETRACER..... >

/X P1_ECL2IC IXod | (@) html.html

| i vbscriptubs

| @

python.python

< | Explorer (=]

RPTPROPS

—- PRCPS Reporting Options

"PVIO" 'EVDC' 'PVIN'

/

SOLUTION

EQUIL
5270 400
SALTVD
5000.0
5500.0

AQUEETE
1 5400
£

aQUCT
2 540
£

0.0 5270.0|

9.0
8.0 /

i* 2.0E9

0.0 1* 20

Real-Time
Keyword Help

3.0E-5 540.96 1 10.0 /

.0 0.10 3.pE-5 2400.0

AQUANCOM
1 15 1
2 15 1
/

BQANTRC
1 'AFW
2 'ACW'
£

TBLKFAFK
150*0.0

TBLKFACK
150%0.0

AQUANCON

Specifies connection data for analytic

aquifers

x [ecupse 100

AQUANCON connects analytic

X |ECLIPSE 300

aquifers, declared using

SPECTAL

AQUCT, AQUFETR, AQUFLUX,

RUNSPEC

AQUCHWAT or AQUCHGAS,
and AQUFET in ECLIPSE 100,

m

to one or more reservoir cells.

P
g
E
g

TBLKFINW
150%1.0 /

RPTS0L

METRIC 12:45 14 OCT 83

-- Initialisation Print Output

'"PRES' '50IL' 'SWAT' 'S5G
"BQUCT=5"

'FIPTR=1"

'RVVD'
'TBLK'

Keyword Usage
Examples

.

Di

rectory Tree

- Files | || Explorer| =
| BlFis | id
| DataEditor -

|, DeckEd
). build

e

1 dist

1. DlLs

Ji docs M
'

I

ekeys
help

W ess

- | data

J. HISTOR|
| INJHIST
|, zpey

T
Help & Examples

| @) Full Help | sk Examples (2)

Sub-Iems (3)

Example 1

RQANTRC
1 WILl 1.0
1 WI2 0.0
2 WI1 0.0
2 WI2 1.0
/

Example 2

BQRNTRC
1 TRE 0.6 /
!

~

Eclipse

cpl252

CRLF

Line: 536 Column: 8

Conclusions

v' Many, many more examples of the usage of Python in the oil industry that |
couldn’t show
v Python is becoming increasingly popular amongst reservoir engineers

* Automation improves working effectiveness a hundredfold

* Beauty and elegance of the language — easy to grasp even for newcomers

v Third-party packages add great value to the standard library:
* matplotlib — plot customization and unbeatable figure quality
* numpy and scipy — fast numerical manipulation of multi-dimensional arrays

 f2py —when you need Fortran raw speed with Python elegance

VTK and mayavi — scalable 3D visualization

* wxPython — the glue to keep all the above together in a nice, point-and-click GUI

v Presentation samples: http://www.infinity77.net/pycon/oily.zip

MAERSK
OIL

http://www.infinity77.net/pycon/oily.zip

Thank You

Questions?

Comments?

MAERSK
OIL

