
Oily Python: a Reservoir Engineering Perspective

PyAr – November 17, 2012

Andrea Gavana
Maersk Oil

andrea.gavana@gmail.com
andrea.gavana@maerskoil.com

mailto:andrea.gavana@gmail.com
mailto:andrea.gavana@maerskoil.com

Outline

 What reservoir engineers do

 Data pre-processing and number crunching – xlrd and numpy

 2D visualizations – matplotlib

 3D visualizations – VTK, mayavi and NetworkX

 Integration with the reservoir numerical simulator – f2py

 Automation and N-D interpolation – Python and scipy

 Graphical user interfaces (GUIs) – wxPython

Presentation samples: http://www.infinity77.net/pycon/oily.zip

http://www.infinity77.net/pycon/oily.zip

What We Do

 Using all sorts of real-life measurements:

• Man-made seismic waves

• Detailed record of the geologic formations penetrated by a well (logs)

• Rock properties, oil/water/gas content in the reservoir rock

• Pressure/temperature vs. depth in a well

• Oil/water/gas production rates measured at the well

• … and many others …

 A reservoir engineer:

• Builds a 3D numerical model representing the reservoir and runs time-dependent
fluid flow simulations

• Tries to calibrate that model, i.e., match the simulated results with the real data

• Using the calibrated model, tries to predict the future performances of the field

What We Do – Complications

1 – 10 Km
50 – 60 Km 20 – 100 GB

 Located underground: we can’t go and see what’s in there

 Sheer areal size – hard to accurately model numerically

 Huge amount of data to pre-process and integrate

 Each simulation can easily generate 100 GB of results to analyze

Data Pre-Processing

“When fed with garbage data, a simulator is a machine that calculates meaningless

results with incredible precision.”

 A big part of the job is to ensure that the input data makes sense

• Measurements come from many, unrelated sources

• Data frequency – both in time and depth – varies wildly

• Deep and thorough data checking needs to be carried out

 Dense visual representations of the input data are fundamental

• Nothing beats seeing an image of your data to spot errors

• Automatic filters and data adjustments (via Python code) are inherently limited

 Cleaned, sensible data can then be used to feed the simulation

• One possible source of errors has been removed

Data Pre-Processing – xlrd

 Part of the data comes in Excel format (sigh…) – I am no friend with Excel

 xlrd is a great, multi-platform Python package to read Excel files

• Fast as a rabbit – faster than Excel itself

• Works around many Excel bugs (especially datetime-related)

 Smoothly handles different cell types

(empty, text, number, boolean, etc…)

 Various Excel-errors handling (#REF!,

#DIV/0!, #VALUE!, etc…)

 Info on cell fonts, formats, formulae

 It’s the base of XLSGrid (an AGW

widget in wxPython) 

Oily sample: xlrd_1.py

Number Crunching and I/O

Task of the day

 Quality check of the electrical measurements on a well (logs)

 Depth-based data at 15cm intervals (well length can be more than 10Km)

 Free format text file with variable-length headers

• Data is organized in columns

 We only care about depth, rock property and water content

• All other data is discarded

 Unphysical values must be filtered out (X < 0 or X > 1)

 Cleaned data is then exported in another format

1. Keeping original depth intervals (15cm)

2. Averaging rock property and water content every 6m

Number Crunching and I/O

Problem size and available resources

 860 wells, 4.9 GB of data scattered over a network

 Python 2.7 on Windows Vista:

• CPU @ 3.46 GHz, 64 bit architecture

• 16 cores, 96 GB or RAM

Header Data

Oily sample: numpy_1.py

Number Crunching and I/O – numpy

 loadtxt is very handy and fast

 Returns a 2D numpy array

 Supports a wide range of file

formats by tweaking its keyword

arguments

 Fast and intuitive operations on N-D

arrays

 savetxt is as handy and as fast as

loadtxt

 A moving average implementation is

a 2-liner with numpy

Number Crunching and I/O – numpy

Final results and performances

 Looped through all the files in 6.5 minutes

 Can we do better?

• Yes we can – go parallel with the multiprocessing module

• The task is easily parallelizable: one file at a time

 Windows is less suited to parallel stuff than

other platforms (no os.fork())

 Nevertheless, this approach gives stupendous

speed gains

 If I am I/O-bound… I don’t care

Number Crunching and I/O – numpy

2D Visualizations

“A picture is worth a thousand words.”

 We produce visualizations for every data type in our datasets

• Visual inspection is a powerful solution to spot errors

• Everyone in the team has a chance to analyze the data

• Often provide new insights on how to better integrate the data

 The generated plots contain as much information as possible

 matplotlib is the Python package of choice

• Almost limitless customizations of plots

• Very high plot quality and wide range of plot types

• Easy integration with GUI toolkits (wxPython, Qt, PyGtk, TkInter)

2D Visualizations – matplotlib

2D Visualizations – matplotlib

 Multiple independent Y-axis

 Axis location, ticks, colors, labels, etc… can

be tweaked

 axisartist supports curvilinear axis as well

Oily sample: matplotlib_1.py

 axhspan adds a horizontal span (rectangle)

across the axis

 axvspan is its vertical friend

Oily sample: matplotlib_2.py

2D Visualizations – matplotlib

2D Visualizations – matplotlib

 Tables are a useful addition to

matplotlib plots

 Exact formatting, colors and font

may sometimes be hard to get

right

Oily sample: matplotlib_3.py

 Polar plots are not widely used in

the oil industry

 They can be a great tool to analyze

a well trajectory

Oily sample: matplotlib_4.py

2D Visualizations – matplotlib

2D Visualizations – matplotlib

 broken_barh is the perfect tool to

draw drilling schedules

 Similar plots can be obtained by

using multiple calls to ax.barh()

 Axis annotations add useful info

about the data being displayed

Oily sample: matplotlib_5.py

I’ll use this occasion to remember John Hunter, the creator of matplotlib

(1968-2012)

3D Visualizations

“There's something that 3D gives to the picture that takes you into another land and

you stay there and it's a good place to be...”

 Most commercial software handle 3D stuff with no effort

 3D visualization in Python is used only for specific, niche problems

• Simulation results of well production at a specific depth

• Double-checking input data for the simulation

• Visualize a relationship between wells, area, reservoir and a project

 VTK and mayavi are the most widely used 3D rendering Python packages

• Scale fairly well on big 3D datasets

• VTK can easily be integrated in a GUI window (wxPython, Qt, PyGtk, etc…)

• VTK figures can be saved as VRML files to let the colleagues play with them

3D Visualizations – VTK

 3D reservoir model, 500,000 cells (VTK unstructured grid)

 We easily go up to 10 million cells, interaction is still smooth

3D Visualizations – VTK

 VTK unstructured grids require explicit point and cell representations

 3D Cells can be seen as distorted hexahedrons

 Special techniques exists to handle very

large datasets

 Coincident points can be merged (faster

rendering)

 Highlighted functions are available in the

array_handler.py module as part of the

distributed samples

 These functions ease the transition

between numpy arrays and VTK arrays

Oily sample: vtk_1.py

3D Visualizations – VTK

 Spheres identify a

producing interval in a

well

 Colors represent the

produced fluid (oil,

water, gas)

 Spherical slices shows

the relative abundance

of each fluid

 Each sphere can be

“picked”, i.e. selected

with the mouse, to

display more data

 Time based animation

are possible

3D Visualizations – VTK

 vtkPolyData can represent vertices, lines,

polygons etc…

 vtkTubeFilter is a very good way to

represent wells in a 3D space

 The well name caption “actor” follows the

user view while she interacts with the VTK

window

 Highlighted functions are available in the

array_handler.py module as part of the

distributed samples

Oily sample: vtk_2.py

3D Visualizations – NetworkX and mayavi

 Visualize relationships

between wells, areas,

reservoirs and projects

 Shows dependencies

between wells and

undeveloped areas

 3D version of a

GraphViz inheritance

diagram

 Particularly useful

when a project

contains 1000s of wells

Oily sample: mayavi_1.py

Integration with the Simulator

“Fast as a rabbit, dumb as a stone.”

 The reservoir simulator can easily generate 100 GB of results per simulation

 Each result set is made of 5-8 interesting files

• Results are stored in heavily compressed, unformatted binary files

• These files are generated by a Fortran-based simulator

• File structure is relatively simple and straightforward

 We can use Python to extract the simulation results from these files

• Performances are generally poor (code is slow)

• Does not scale well when files are big

 Can we write a small Fortran routine and interface it with Python to read these

large, binary files?

• Enter f2py

Integration with the Simulator – f2py

 Fortran to Python interface generator

 Connects the two languages:

• Creates Python C/API modules from Fortran 77/90/95

• Works directly on Fortran sources

• Automatically handles the difference in the data storage order of multi-dimensional

Fortran and numpy arrays

 Requires a Fortran compiler installed – supports many major compilers, such as

gfortran, Intel IVF, Absoft, NAG, etc…

f2py -c fortran_file.f90 -m py_module

 Now every Fortran subroutine/function in fortran_file.f90 is accessible in Python

by importing py_module

Integration with the Simulator – f2py

Automation and N-D Interpolation

“Besides black art, there is only automation and mechanization.”

Task of the day

 We have 16,000 new simulations available (sensitivities)

• Each of them represents a unique combination of 13 parameters (oil gravity, rock

properties, distance between wells etc…)

• Simulation results could give insights on the numerical model sensitivity to the

parameters variations

 The 13 parameters form a discrete set of known data points

 Use a f2py-generated module to read results from all the simulations

 Use interpolation to estimate results at intermediate values of the parameters

• scipy offers multi-dimensional interpolation/extrapolation capabilities

• scipy.interpolate.rbf: uses Radial Basis Function interpolation of N-dimensional

scattered data

Oily sample: scipy_1.py

Automation and N-D Interpolation – scipy

Interpolation

Extrapolation

Extrapolation

Graphical User Interfaces

“A picture is worth a thousand words. An interface is worth a thousand pictures.”

 User interfaces are an obvious choice when it comes to sharing your findings

with non-Pythonistas colleagues

 Although many high quality GUI frameworks are available…

 wxPython is *the* tool I use

• Almost effortlessly integrate with matplotlib and VTK (2D and 3D)

• Easy to build practical, responsive and sexy user interfaces

• GUIs look (and are) native, whatever the platform

• Number of widgets available far surpass all other toolkits

 Distribution to colleagues is done via py2exe / PyInstaller and InnoSetup to

generate a standard Windows installer

Graphical User Interfaces

Task of the week/month

 Create a GUI that evaluates the quality of a calibrated reservoir model

 Calibration is good when simulation results

are close to measurements (shaded area)

 Errors in the calibration are measured by

different formulas such as:

 The GUI should allow the user to explore the numerical calculations and to

quickly plot the simulation results against the measurements

Graphical User Interfaces

Complications

 Number of data points: 17 years of historical measurements

 Number of wells and simulation time steps (thousands)

 The user would like to be able to:

• Filter out values outside a user-defined date window (per well)

• Apply a custom multiplier to some of the measurements

• Exclude some values if a well has been closed for more than X days in a month

• Modify the error function if a well has been using some gas to ease production

• Many, many other customizations…

 The GUI puts together the power of numpy, f2py, matplotlib, scipy,

multiprocessing and wxPython to deliver all that and much more 

Graphical User Interfaces

Graphical User Interfaces

Final outcome

 We have a fast, practical and nice GUI to examine the quality of model

calibration

 Colleagues can independently run the GUI and examine the results

 Multiple simulations can be analyzed and compared

 The interface automagically exports matplotlib figures for all the wells and Excel

reports (and it does it on multiple processors…)

• Findings and insights can easily be shared outside the team

• Consistent, fixed (and beautiful) format for pictures in reports and documents

 We have the source code  – any modification is embarrassingly fast

Graphical User Interfaces

Graphical User Interfaces

Task of the week/month

 The reservoir simulator we use is called ECLIPSE

• It’s keyword-based – you enter inputs in a text file with keywords and sub-keywords

• 1983: first release of ECLIPSE (ECL’s Implicit Program for Simulation Engineering)

• ECLIPSE currently handles ≈1,600 keywords

• On average, each keyword has 3 switches/sub-keywords (≈4,200 in total)

• No editor with syntax highlighting, error checking capabilities and integrated help

system exists for the input files (after 30 years!!)

 How about a wxPython-based editor with all these capabilities?

• The wx.StyledTextCtrl (Scintilla-based) already provides excellent syntax highlighting

for various programming languages

• wxPython 2.9 contains powerful HTML viewing capabilities (via wx.html2 module)

• The ECLIPSE input files syntax is very similar to the programming language Lua

Graphical User Interfaces

Another GUI: DeckEd

 DeckEd is a text editor based on wx.StyledTextCtrl

 Syntax highlighting for the reservoir simulator ECLIPSE and more than 60 other

programming languages (Python, C++, Java, HTML, PHP, Ruby, etc…)

 Integrated help for the reservoir simulator keywords and sub-keywords

 Runtime monitoring of simulation status and progress

 Runtime error checking for ECLIPSE input files keywords

 Plugin-based architecture – you can add a Python debugger, a spell checker, a

code browser, etc…

Graphical User Interfaces

Keyword Tree

Real-Time Error

Checking

Open Files List

Integrated Help

Graphical User Interfaces

Directory Tree

Alphabetical

Keyword List

Real-Time

Keyword Help

Keyword Usage

Examples

Conclusions

 Many, many more examples of the usage of Python in the oil industry that I
couldn’t show

 Python is becoming increasingly popular amongst reservoir engineers

• Automation improves working effectiveness a hundredfold

• Beauty and elegance of the language – easy to grasp even for newcomers

 Third-party packages add great value to the standard library:

• matplotlib – plot customization and unbeatable figure quality

• numpy and scipy – fast numerical manipulation of multi-dimensional arrays

• f2py – when you need Fortran raw speed with Python elegance

• VTK and mayavi – scalable 3D visualization

• wxPython – the glue to keep all the above together in a nice, point-and-click GUI

 Presentation samples: http://www.infinity77.net/pycon/oily.zip

http://www.infinity77.net/pycon/oily.zip

Thank You

Questions?

Comments?

